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LETTER TO THE EDITOR 

Relaxation behaviour in ultrametric spaces 
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$ Laboratorium fur Physikalische Chemie, ETH-Zentmm, CH-8092 Zurich, Switzerland 

Received 25 September 1985 

Abstract. We model transport in random media through random walks on ultrametric 
spaces, which allow us to account for energetic randomness. We monitor the relaxation 
patterns for the trapping and target annihilation problems and show that the relaxation 
depends qualitatively on temperature. 

Relaxation in amorphous media, such as polymeric and glassy systems, often deviates 
from the exponential form. Relaxation patterns range from stretched exponentials 
[ 1,2] to algebraic time dependences [3,4]. As was recently pointed out, such behaviours 
appear naturally in hierarchical models [ 5-81. Furthermore the topological realisation 
of such models are ultrametric spaces [7,9-131. 

In previous works [8,14,15] we have analysed several types of disorder and have 
pointed out the interconnections between different aspects of randomness. Thus, the 
transport properties of spatially random systems (mixed crystals, alloys) are determined 
by a distribution of microscopic (site-to-site) transfer rates (temporal disorder) and 
by different interactions with the surroundings (energetic disorder). Treating the full 
microscopic problem is an arduous task, which calls for extensive numerical simula- 
tions. More analytically minded ways have to invoke some decoupling and to model 
each disorder type separately. Thus spatial randomness may be modelled through 
fractals, whereas temporal disorder can be accounted for using waiting time distribu- 
tions, as are familiar from continuous-time random walk [16] (CTRW) and multiple 
trapping [5] (MT) approaches. Evidently, one may eventually combine the models, as 
we have recently demonstrated by considering CTRW on fractals [15]. 

Ultrametric spaces (UMS) now provide an elegant way to model the energy random- 
ness of the sample, and complement the previous approaches. In UMS models the 
temperature dependence of the transport enters naturally. As we will show, dynamics 
on UMS is an extension of the MT formalism and involves fractal time. 

In this letter we will discuss processes associated with Brownian motion on UMS, 

such as relaxations related to random walks. 
Ultrametric spaces (UMS) occur naturally when classification of objects into distinct 

clusters is involved [9]. A simple example of a UMS is the baseline of figure 1, the 
whole figure being reminiscent of a Bethe lattice. Only the baseline points belong to 
the UMS, and the structure above it serves to indicate connections. Cutting the structure 
above the baseline and parallel to it leads to a system of disjoint clusters. These clusters 
increase when the height of the cut increases and merge together to form larger clusters 
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(nesting property). The height of the cut thus determines a generalised distance for 
the set of points on the baseline. 

More formally, for each hierarchical arrangement as in figure 1 (dendogram) [9] 
there is a corresponding UMS. In this space X the distance d(x ,y)  between sites 
satisfies the strong triangle inequality 

d(x, Y ) <  max(d(x, z ) ,  d ( Y ,  2)) (1) 

for all x, y ,  z E X [9,10]. As a consequence of equation (1) all triangles in the UMS 

are isosceles, i.e., the largest and the second largest of the numbers d(x, y ) ,  d(x, z ) ,  
d ( y ,  z) are equal. Now, if one defines B, ( r )  as the sphere with centre a and radius I 

E,( r )  = [x E X: d (  a, x) r ]  (2) 

then two spheres B,( r ) ,  Bb( r )  with the same radius are either disjoint E,( r )  n & ( r )  = 0, 
or identical B , ( r )  = Bb(r). It follows that all points of a sphere may be viewed as 
centres. Any two spheres in a UMS are either disjoint, or one is completely contained 
in the other. Furthermore, topologically all UMS spheres are both closed and open 
(‘clopen’, as formulated in [lo]). Thus the terms ‘spheres’ and the previously discussed 
‘hierarchical clusters’ are synonymous. 

Figure 1. The ultrametric structure (UMS) 2,. 

For physical applications we may specify further the term distance. As an example, 
one may envisage clusters of points in continuum percolation problems. Such clusters 
are defined by the requirement that the Euclidean distance between neighbouring 
points of the cluster C is less than a given value 6; then for each pair of points 
(x, y )  E C2 one can find a path (x, x l ,  xz,  . . . , x,, y ) ,  so that all xi E C, and the Euclidean 
distance between successive points of the path is less than 6. If all points of the 
structure now interact via forces of range less than 6, then the percolation clusters 
defined above are non-interacting. One may then order the set of points according to 
the variable 6 in a dendogram (UMS).  

Another example is provided by the hopping conductivity. Here temporarily 
localised charge carriers are thermally activated over random energy barriers Ei. In 
this example the distance which defines the clusters of sites depends on the activation 
energies via the corresponding Boltzmann factor e-pEi. If, after being thermally 
activated, the charge carriers relax (get trapped) at any site of the system, this example 
leads to the MT model. To wit, we recover MT expressions by taking the allowed barrier 
heights to be equidistant, E, E { j h :  j E N }  and to be exponentially distributed 
P ( E )  d E  -eppE dE. The probability of remaining on a site during time t is, averaged 
over all sites, 

cc 

q( t )  = A 1 e-pJA exp( - t e-pJA) 
] = I  

(3) 

with A = epA - 1. The waiting-time distribution $( t )  dt follows from equation (3) by 
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differentiation, $( t )  = - (d /d t )q(  t ) .  Differentiating equation (3) and setting b =e-@' 
and N = e-pA one obtains 

m- 

This expression is identical to the one put forward by Montroll and Shlesinger [17, 
equation (2.122)], in discussing MT. At longer times $ ( t )  scales, since b < 1 and 

$(bt) = $ ( t ) / N b  - (N-I - 1)  exp(-tb) - $( t ) /  Nb 

y = In N/ln b = p / P .  

( 5 )  

( 6 )  

and thus $( t )  - t - ' - Y ,  with 

Dispersive transport obtains b < N for y < 1. 
This picture can now be generalised by considering UMS. The idea is that after an 

activation by the energy E the charge carrier may reach only sites which belong to 
the sphere centred on the original site, the sphere radius depending, of course, on E. 
Using figure 1, and again equidistant energy barriers, a particle activated by E with 
A d  E < 2A may reach 3 sites (including the original one) and generally for j A  E < 
( j  + 1)A may reach 3' sites. Here the number 3 appears because of the specific geometry 
of figure 1 ,  which depicts the UMS 2,. To a general space, say in which the clusters 
are nested hierarchically, in groups of z objects corresponds the UMS Z,,  and an 
activation energy of j A  C E < (j+ 1)A allows it to reach zJ sites. 

We now consider a simple qualitative argument for random walks on UMS. Basic 
quantities for such random walks are the distribution R (  t )  of distinct sites visited in 
time t ,  its mean S ( t )  = ( R ( t ) )  over all realisations, and the probability Po(t)  of being 
at the origin. 

Consider the time intervals ekpA s t k  < e ( k + l ) p A .  During these intervals the z k  points 
of the sphere &(O) are accessible to the walker, and one has 

(7)  Z k  - z ( P A ) - ' l n ( Q  = e v M r , )  = t ;  

where we set 

y = In z / (  PA).  (8) 

For y <  1, i.e. P A >  1, z k  increases more slowly than t k ,  and the walker explores 
practically all points in & ( O )  (compact exploration). Therefore S( t k )  - z k  - r ; ,  i.e. 

S( t )  - t Y .  (9) 

P o ( f k ) - Z - k -  f;' (10) 

Furthermore, assuming an equipartition of probabilities 

i.e. Po( t )  - t - Y  - [S (  t ) ] - ' .  The last relation is reminiscent of random walk results in 
fractal spaces under compact exploration [ 181. 

On the other hand, for y >  1 (i.e. P A <  l) ,  z k  increases more rapidly than t k  and 
the mean number of distinct sites visited stays proportional to f k ,  i.e. S( t )  - t. Here 
the exploration is non-compact. We note that here one still has Po( t )  - tCY, as obtained 
analytically in [13] for walks on the UMS Z2 and in [12] for walks over the whole 
hierarchical lattice. 

The central role played by y = In z / (AP)  may also be inferred from an analogy to 
MT, where b' is the activation barrier b' = e-PJA and the level density in the hierarchy 
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decreases with increasing level as z-', i.e. N -  l /z.  Then 

y = ln(z- ') / ln(e-fiA) = (In z ) / (  P A ) .  

From this picture we obtain $( t )  - t - ' -Y  and the relaxation pattern is algebraic. 
Returning to random walks we note that the first moments S (  t )  = ( R (  t ) ) ,  c2( t )  = 

(R ' ( t ) ) - (R( t ) ) '  of the distribution R ( t )  of distinct sites visited in t, are analytically 
difficult to obtain even for walks on regular lattices [19] and an  exact expression for 
R (  t )  is known only in d = 1. On the other hand the knowledge of R (  t )  is fundamental 
in the trapping problem, and  we obtain this information through simulations. 

We have performed a series of simulations on UMS (mostly Z2 and Z 3 ) ,  in which 
we varied the temperature parameter A P  and hence y, equation (8). From the foregoing 
discussion, y = 1 is marginal, and 2 y  plays an  analogous role [ 121 to the spectral 
dimension 2. We have thus chosen y values both above and below y = 1. 

In the simulation calculation we let the random walker start at  an  arbitrary site of 
the UMS. The walker attempts at a fixed time interval to perform a step. The level 
height a walker may reach is distributed according to the activation energies. From 
this level the walker is directed randomly to one of the points of the corresponding 
cluster and  may therefore land also on the original site. In the simulation we account 
for 1000 hierarchical levels and thus z ' ~ ~ "  sites are included. 

Consider first the mean number of distinct sites visited in n steps, S,  = ( R n ) .  This 
quantity offers both a check on the accuracy of our simulation procedure, and also 
allows us to monitor apparent deviations from the leading n y  behaviour, due to 
logarithmic corrections for y around 1. The results are presented in figure 2, where 
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Figure 2. Mean number S, of distinct sites visited in n steps. The simulation results are 
given as dots, and the curves are fitted according to equation (12).  The values of y are as 
indicated. 
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for each curve lo4 distinct random walk realisations were averaged. The dots represent 
the numerical findings, whereas the lines are the best fit ( n  < lo4) to the trial function 

S,  = An”. (12) 

We summarise the A and CY values in table 1 .  From this table it seems that for y d 0.5, 
a and y practically coincide, whereas for y > 1.5, CY is practically unity. For y around 
1, a is systematically lower, as could be expected from the analogy between 2y and 
J, since for random walks on two-dimensional lattices S,  - An/ln n holds. 

Another quantity which is readily evaluated from the distribution R, is the variance 
a’, = (R’,)  -(R,)’ .  The results are given in figure 3, and are fitted to 

a’, = Dn’ (13) 
where the D and 6 values are again summarised in table 1 .  For small y values 6 is 
practically 2y, whereas for y larger than 1,  6 tends to one. Again this result parallels 
the behaviour for regular lattices, for which the dependence of the variance on d is 
largest for d = 2; one has a’, - n ( d  = l ) ,  a’, - nz/ln4 n ( d  = 2) and a’, - n In n ( d  = 3). 
Interestingly, for y < 1, 2a  = 6, which seems to imply U’, - S’, , an expression which is 
exact in d = 1 ,  and which holds well [18] for random walks over compact spaces, 

< 2. It is tempting to conjecture that for the higher cumulants Kj,, of the distribution 
R, one also has Kj,, - nyJ, for y “  1. 

We are now in a position to investigate relaxation phenomena on the UMS. Two 
interesting problems are the trapping of walkers and the target annihilation. 

In the trapping problem mobile walkers are annihilated when hitting immobile 
traps, randomly distributed on the UMS [ 19,201. As we have often discussed [ 14,20,21], 
the decay law of the walkers due to a trap density p is 

a,, = ey(e-ARn) (14) 
where A = -In(l - p )  and where the average runs over all realisations of the walk. 
Equation (14) may be expressed as a cumulant expansion for small n 

Table 1. Mean S ( t ) ,  equation (12), and variance a2(t) ,  equation (13) ,  of the number of 
distinct sites visited by walkers on the UMS Z 3 .  For the fit the first lo4 steps are used. 

hp Y A a D s 

4 0.275 1.351 0.288 0.249 0.(57) 
2 0.549 1.071 0.548 0.094 1 .11  
1.5 0.732 0.775 0.708 0.037 1.41 
1.3 0.845 0.632 0.793 0.018 1.56 
1.2’ 0.915 0.563 0.839 0.017 1.60 
1 . 1  0.999 0.517 0.882 0.017 1.62 
1 .o 1.099 0.489 0.921 0.012 1.66 
0.9 1.221 0.470 0.956 0.035 1.52 
0.8 1.373 0.490 0.979 0.120 1.33 
0.7 1.569 0.537 0.992 0.319 1.15 
0.6 1.831 0.604 0.997 0.454 1.04 
0.5 2.197 0.681 0.999 0.407 0.99 
0.1 10.986 0.948 1.000 0.048 1.01 
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Figure 3. The variance U: of the number of distinct sites visited. The notation is as in 
figure 2, and the fit corresponds to equation (13).  

In this region approximations to a,, are 

j = 1  

In figure 4 we present the decay due to trapping on Z ,  for Ap = 314, i.e. y = 1.465, for 
several values of p ,  and compare it to the approximate forms and Q2,".  We note 
that over four orders of magnitude in the decay @,, is practically exponential, and that 

approximates very well, whereas the agreement with (plZ,,, is excellent. This 
situation is very reminiscent of the decay for d = 3 (see figure 4 of [20]). 

A decrease in temperature has a very drastic effect on a,,. In figure 5 we present 
the decay at AB = 2, i.e. y = 0.549. The decay is clearly non-exponential. Furthermore 
here neither nor Oz.,, describe the decay well, and one has to go to a higher order 
in N to obtain a somehow reasonable approximation. The situation is similar to the 
one encountered for trapping on the linear chain, d = 1 (figure 2 of [20]) and for 
trapping on the planar Sierpinski gasket, d' = 1.365 (see figure 3 of [14]). As discussed 
by us in [21], in the short and in the long time domains @,, displays Williams-Watts 
stretched exponential forms [ l ,  21. Of interest here is that a change from exponential 
to stretched exponential behaviour occurs due to a change in temperature. 

To conclude this discussion, we would like to point out that on UMS the target 
problem, in which immobile targets are annihilated by mobile walkers, admits an exact 
solution. As in the case for regular lattices [22], for non-interacting walkers, randomly 
placed on the UMS following a Poisson distribution, we obtain as the decay law 

&,, = exp[ -$s,, 1 (17) 
where now p' is the density of the walkers. The derivation of equation (17)  follows 
the lines of our work [22] and our numerical simulations support the above form. 
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Figure 4. Decay law @” due to trapping on Z , ,  where y = 1.465 and the trap density p is 
as indicated. Also given as broken lines are and equation (16). 

400 800 
n 

Figure 5. Same as figure 4, for y = 0.549. 

We remark that for y <  1, equation (17) again corresponds to a Williams-Watts type 
decay [l ,  21. 

In this work we have analysed dynamical relaxation behaviours on UMS, and have 
pointed out the analogies to our previous results for random walks on regular lattices 
and on fractals. All aspects suggest that random walks on UMS with a parameter 



L84 Letter to the Editor 

y = In z/Ap parallel findings for lattices with a spectral dimension d” = 27. Interestingly, 
one may therefore switch through the marginal behaviour at y =  1 ( d = 2 )  through a 
simple temperature change. Such a phase transition should then be clearly visible 
already in the qualitative pattern (exponential against stretched exponential) of the 
corresponding decay laws. 
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